Cursusaanbod
Introduction to Reinforcement Learning and Agentic AI
- Decision-making under uncertainty and sequential planning
- Key components of RL: agents, environments, states, and rewards
- Role of RL in adaptive and agentic AI systems
Markov Decision Processes (MDPs)
- Formal definition and properties of MDPs
- Value functions, Bellman equations, and dynamic programming
- Policy evaluation, improvement, and iteration
Model-Free Reinforcement Learning
- Monte Carlo and Temporal-Difference (TD) learning
- Q-learning and SARSA
- Hands-on: implementing tabular RL methods in Python
Deep Reinforcement Learning
- Combining neural networks with RL for function approximation
- Deep Q-Networks (DQN) and experience replay
- Actor-Critic architectures and policy gradients
- Hands-on: training an agent using DQN and PPO with Stable-Baselines3
Exploration Strategies and Reward Shaping
- Balancing exploration vs. exploitation (ε-greedy, UCB, entropy methods)
- Designing reward functions and avoiding unintended behaviors
- Reward shaping and curriculum learning
Advanced Topics in RL and Decision-Making
- Multi-agent reinforcement learning and cooperative strategies
- Hierarchical reinforcement learning and options framework
- Offline RL and imitation learning for safer deployment
Simulation Environments and Evaluation
- Using OpenAI Gym and custom environments
- Continuous vs. discrete action spaces
- Metrics for agent performance, stability, and sample efficiency
Integrating RL into Agentic AI Systems
- Combining reasoning and RL in hybrid agent architectures
- Integrating reinforcement learning with tool-using agents
- Operational considerations for scaling and deployment
Capstone Project
- Design and implement a reinforcement learning agent for a simulated task
- Analyze training performance and optimize hyperparameters
- Demonstrate adaptive behavior and decision-making in an agentic context
Summary and Next Steps
Vereisten
- Strong proficiency in Python programming
- Solid understanding of machine learning and deep learning concepts
- Familiarity with linear algebra, probability, and basic optimization methods
Audience
- Reinforcement learning engineers and applied AI researchers
- Robotics and automation developers
- Engineering teams working on adaptive and agentic AI systems
Leveringsopties
PRIVÉGROEPSTRAINING
Onze identiteit draait om het leveren van precies wat onze klanten nodig hebben.
- Pre-cursusgesprek met uw trainer
- Aanpassing van de leerervaring om uw doelen te bereiken -
- Op maat gemaakte overzichten
- Praktische, praktische oefeningen met gegevens / scenario's die herkenbaar zijn voor de cursisten
- Training gepland op een datum naar keuze
- Gegeven online, op locatie/klaslokaal of hybride door experts die ervaring uit de echte wereld delen
Private Group Prices RRP from €9120 online delivery, based on a group of 2 delegates, €2880 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.
Neem contact met ons op voor een exacte offerte en om onze laatste promoties te horen
OPENBARE TRAINING
Kijk op onze public courses
Reviews (3)
Goede mix van kennis en praktijk
Ion Mironescu - Facultatea S.A.I.A.P.M.
Cursus - Agentic AI for Enterprise Applications
Automatisch vertaald
De mix van theorie en praktijk en van hoge- en lagenniveau perspectieven
Ion Mironescu - Facultatea S.A.I.A.P.M.
Cursus - Autonomous Decision-Making with Agentic AI
Automatisch vertaald
Pratische oefeningen
Daniel - Facultatea S.A.I.A.P.M.
Cursus - Agentic AI in Multi-Agent Systems
Automatisch vertaald