Cursusaanbod

Introduction

Installing and Configuring Machine Learning for .NET Development Platform (ML.NET)

  • Setting up ML.NET tools and libraries
  • Operating systems and hardware components supported by ML.NET

Overview of ML.NET Features and Architecture

  • The ML.NET Application Programming Interface (ML.NET API)
  • ML.NET machine learning algorithms and tasks
  • Probabilistic programming with Infer.NET
  • Deciding on the appropriate ML.NET dependencies

Overview of ML.NET Model Builder

  • Integrating the Model Builder to Visual Studio
  • Utilizing automated machine learning (AutoML) with Model Builder

Overview of ML.NET Command-Line Interface (CLI)

  • Automated machine learning model generation
  • Machine learning tasks supported by ML.NET CLI

Acquiring and Loading Data from Resources for Machine Learning

  • Utilizing the ML.NET API for data processing
  • Creating and defining the classes of data models
  • Annotating ML.NET data models
  • Cases for loading data into the ML.NET framework

Preparing and Adding Data Into the ML.NET Framework

  • Filtering data models for with ML.NET filter operations
  • Working with ML.NET DataOperationsCatalog and IDataView
  • Normalization approaches for ML.NET data pre-processing
  • Data conversion in ML.NET
  • Working with categorical data for ML.NET model generation

Implementing ML.NET Machine Learning Algorithms and Tasks

  • Binary and Multi-class ML.NET classifications
  • Regression in ML.NET
  • Grouping data instances with Clustering in ML.NET
  • Anomaly Detection machine learning task
  • Ranking, Recommendation, and Forecasting in ML.NET
  • Choosing the appropriate ML.NET algorithm for a data set and functions
  • Data transformation in ML.NET
  • Algorithms for improved accuracy of ML.NET models

Training Machine Learning Models in ML.NET

  • Building an ML.NET model
  • ML.NET methods for training a machine learning model
  • Splitting data sets for ML.NET training and testing
  • Working with different data attributes and cases in ML.NET
  • Caching data sets for ML.NET model training

Evaluating Machine Learning Models in ML.NET

  • Extracting parameters for model retraining or inspecting
  • Collecting and recording ML.NET model metrics
  • Analyzing the performance of a machine learning model

Inspecting Intermediate Data During ML.NET Model Training Steps

Utilizing Permutation Feature Importance (PFI) for Model Predictions Interpretation

Saving and Loading Trained ML.NET Models

  • ITTransformer and DataViewScheme in ML.NET
  • Loading locally and remotely stored data
  • Working with machine learning model pipelines in ML.NET

Utilizing a Trained ML.NET Model for Data Analyses and Predictions

  • Setting up the data pipeline for model predictions
  • Single and Multiple predictions in ML.NET

Optimizing and Re-training an ML.NET Machine Learning Model

  • Re-trainable ML.NET algorithms
  • Loading, extracting and re-training a model
  • Comparing re-trained model parameters with previous ML.NET model

Integrating ML.NET Models with The Cloud

  • Deploying an ML.NET model with Azure functions and web API

Troubleshooting

Summary and Conclusion

Vereisten

  • Knowledge of machine learning algorithms and libraries
  • Strong command of C# programming language
  • Experience with .NET development platforms
  • Basic understanding of data science tools
  • Experience with basic machine learning applications

Audience

  • Data Scientists
  • Machine Learning Developers
 21 Uren

Leveringsopties

PRIVÉGROEPSTRAINING

Onze identiteit draait om het leveren van precies wat onze klanten nodig hebben.

  • Pre-cursusgesprek met uw trainer
  • Aanpassing van de leerervaring om uw doelen te bereiken -
    • Op maat gemaakte overzichten
    • Praktische, praktische oefeningen met gegevens / scenario's die herkenbaar zijn voor de cursisten
  • Training gepland op een datum naar keuze
  • Gegeven online, op locatie/klaslokaal of hybride door experts die ervaring uit de echte wereld delen

Private Group Prices RRP from €6840 online delivery, based on a group of 2 delegates, €2160 per additional delegate (excludes any certification / exam costs). We recommend a maximum group size of 12 for most learning events.

Neem contact met ons op voor een exacte offerte en om onze laatste promoties te horen


OPENBARE TRAINING

Kijk op onze public courses

Reviews (2)

Voorlopige Aankomende Cursussen

Gerelateerde categorieën