Machine Learning for Finance (with Python) Training Cursus

Course Code

mlfinancepython

Duration

21 hours (usually 3 days including breaks)

Requirements

  • Basic experience with Python programming
  • Basic familiarity with statistics and linear algebra

Overview

Machine learning is een tak van kunstmatige intelligentie waarbij computers kunnen leren zonder expliciet te worden geprogrammeerd. Python is een programmeertaal die bekend staat om zijn duidelijke syntaxis en leesbaarheid. Het biedt een uitstekende verzameling goed geteste bibliotheken en technieken voor het ontwikkelen van toepassingen voor machine learning.

In deze live training onder leiding van een instructeur leren deelnemers hoe ze technieken en hulpmiddelen voor machine learning kunnen toepassen om echte problemen in de financiële sector op te lossen.

Deelnemers leren eerst de belangrijkste principes en brengen hun kennis vervolgens in de praktijk door hun eigen machine learning-modellen te bouwen en deze te gebruiken om een aantal teamprojecten te voltooien.

Aan het einde van deze training kunnen deelnemers:

  • Begrijp de fundamentele concepten in machine learning
  • Leer de toepassingen en toepassingen van machine learning in financiën
  • Ontwikkel hun eigen algoritmische handelsstrategie met behulp van machine learning met Python

Publiek

  • ontwikkelaars
  • Data wetenschappers

Formaat van de cursus

  • Deelcollege, deelbespreking, oefeningen en zware praktijkoefeningen

Machine Translated

Course Outline

Introduction

  • Difference between statistical learning (statistical analysis) and machine learning
  • Adoption of machine learning technology and talent by finance companies

Understanding Different Types of Machine Learning

  • Supervised learning vs unsupervised learning
  • Iteration and evaluation
  • Bias-variance trade-off
  • Combining supervised and unsupervised learning (semi-supervised learning)

Understanding Machine Learning Languages and Toolsets

  • Open source vs proprietary systems and software
  • Python vs R vs Matlab
  • Libraries and frameworks

Understanding Neural Networks

Understanding Basic Concepts in Finance

  • Understanding Stocks Trading
  • Understanding Time Series Data
  • Understanding Financial Analyses

Machine Learning Case Studies in Finance

  • Signal Generation and Testing
  • Feature Engineering
  • Artificial Intelligence Algorithmic Trading
  • Quantitative Trade Predictions
  • Robo-Advisors for Portfolio Management
  • Risk Management and Fraud Detection
  • Insurance Underwriting

Hands-on: Python for Machine Learning

  • Setting Up the Workspace
  • Obtaining Python machine learning libraries and packages
  • Working with Pandas
  • Working with Scikit-Learn

Importing Financial Data into Python

  • Using Pandas
  • Using Quandl
  • Integrating with Excel

Working with Time Series Data with Python

  • Exploring Your Data
  • Visualizing Your Data

Implementing Common Financial Analyses with Python

  • Returns
  • Moving Windows
  • Volatility Calculation
  • Ordinary Least-Squares Regression (OLS)    

Developing an Algorithmic Trading Strategy Using Supervised Machine Learning with Python

  • Understanding the Momentum Trading Strategy
  • Understanding the Reversion Trading Strategy
  • Implementing Your Simple Moving Averages (SMA) Trading Strategy

Backtesting Your Machine Learning Trading Strategy

  • Learning Backtesting Pitfalls
  • Components of Your Backtester
  • Using Python Backtesting Tools
  • Implementing Your Simple Backtester

Improving Your Machine Learning Trading Strategy

  • KMeans
  • K-Nearest Neighbors (KNN)
  • Classification or Regression Trees
  • Genetic Algorithm
  • Working with Multi-Symbol Portfolios
  • Using a Risk Management Framework
  • Using Event-Driven Backtesting

Evaluating Your Machine Learning Trading Strategy's Performance

  • Using the Sharpe Ratio
  • Calculating a Maximum Drawdown
  • Using Compound Annual Growth Rate (CAGR)
  • Measuring Distribution of Returns
  • Using Trade-Level Metrics
  • Summary

Troubleshooting

Closing Remarks

Getuigenissen

★★★★★
★★★★★

Related Categories

Related Courses

Cursussen met korting

Course Discounts Newsletter

We respect the privacy of your email address. We will not pass on or sell your address to others.
You can always change your preferences or unsubscribe completely.

Een aantal van onze klanten

This site in other countries/regions